From 1 - 10 / 7389
  • We collected 38 groundwater and two surface water samples in the semi-arid Lake Woods region of the Northern Territory to better understand the hydrogeochemistry of this system, which straddles the Wiso, Tennant Creek and Georgina geological regions. Lake Woods is presently a losing waterbody feeding the underlying groundwater system. The main aquifers comprise mainly carbonate (limestone and dolostone), siliciclastic (sandstone and siltstone) and evaporitic units. The water composition was determined in terms of bulk properties (pH, electrical conductivity, temperature, dissolved oxygen, redox potential), 40 major, minor and trace elements as well as six isotopes (δ18Owater, δ2Hwater, δ13CDIC, δ34SSO4=, δ18OSO4=, 87Sr/86Sr). The groundwater is recharged through infiltration in the catchment from monsoonal rainfall (annual average rainfall ~600 mm) and runoff. It evolves geochemically mainly through evapotranspiration and water–mineral interaction (dissolution of carbonates, silicates, and to a lesser extent sulfates). The two surface waters (one from the main creek feeding the lake, the other from the lake itself) are extraordinarily enriched in 18O and 2H isotopes (δ18O of +10.9 and +16.4 ‰ VSMOW, and δ2H of +41 and +93 ‰ VSMOW, respectively), which is interpreted to reflect evaporation during the dry season (annual average evaporation ~3000 mm) under low humidity conditions (annual average relative humidity ~40 %). This interpretation is supported by modelling results. The potassium (K) relative enrichment (K/Cl mass ratio over 50 times that of sea water) is similar to that observed in salt-lake systems worldwide that are prospective for potash resources. Potassium enrichment is believed to derive partly from dust during atmospheric transport/deposition, but mostly from weathering of K-silicates in the aquifer materials (and possibly underlying formations). Further studies of Australian salt-lake systems are required to reach evidence-based conclusions on their mineral potential for potash, lithium, boron and other low-temperature mineral system commodities such as uranium. <b>Citation:</b> P. de Caritat, E. N. Bastrakov, S. Jaireth, P. M. English, J. D. A. Clarke, T. P. Mernagh, A. S. Wygralak, H. E. Dulfer & J. Trafford (2019) Groundwater geochemistry, hydrogeology and potash mineral potential of the Lake Woods region, Northern Territory, Australia, <i>Australian Journal of Earth Sciences</i>, 66:3, 411-430, DOI: 10.1080/08120099.2018.1543208

  • Geochemical surveys deliver fundamental data, information and knowledge about the concentration and spatial distribution of chemical elements, isotopes and compounds in the natural environment. Typically near-surface sampling media, such as soil, sediment, outcropping rocks and stream or groundwater, are used. The application of such datasets to fields such as mineral exploration, environmental management, and geomedicine has been widely documented. In this presentation I reflect on a sabbatical experience with the Australian Federal Police (AFP) in 2017-2018 that allowed me to extend the interpretation of geochemical survey data beyond these established applications. In particular, with my collaborators we explore ways in which geochemical survey data and maps can be used to indicate the provenance of an evidentiary sample collected at a crime scene or obtained for instance from items belonging to a suspect intercepted at border entry. Because soils are extremely diverse mineralogically, geochemically and biologically, it should theoretically be possible to exclude very large swathes of territory (>90%) from further provenancing investigation using soil data. In a collaboration between Geoscience Australia (GA), the AFP and the University of Canberra (UC), a recent geochemical survey of the urban/suburban Canberra region in southeastern Australia is being used as a testbed for developing different approaches to forensic applications of geochemical surveys. A predictive soil provenancing method at the national scale was also developed and tested for application where no actual detailed, fit-for-purpose geochemical survey data exist. Over the next few years, GA, AFP and UC are collaborating with Flinders University to add biome data from soil and soil-derived dust to further improve the provenancing technique. This Abstract was presented at the 2021 Goldschmidt Conference (https://conf.goldschmidt.info/goldschmidt/2021/meetingapp.cgi)

  • Categories  

    The Digital Elevation Model represents ground surface topography between points of known elevation. The elevation data was calculated using the altimeters and Global Positioning System (GPS) sensor used for the benefit of airborne magnetic and radiometric data on the same survey. The elevation is the height relative to the Australian Height Datum GDA94 (AUSGEOID09). The processed elevation data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the NSW DMR, Discovery 2000 Area N, Menindee, NSW, 1999 survey were acquired in 1999 by the NSW Government, and consisted of 41736 line-kilometres of data at 150m line spacing and 40m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This NSW DMR, Discovery 2000 Area N, Menindee, NSW, 1999 (P744), radiometric line data, AWAGS levelled were acquired in 1999 by the NSW Government, and consisted of 41736 line-kilometres of data at 150m line spacing and 40m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Digital Elevation data record the terrain height variations from the processed point- or line-located data recorded during a geophysical survey. This GSNSW Exploration NSW Area M Kayrunnera elevation grid geodetic is elevation data for the NSW DMR, Area M, Kayrunnera(Milparinka, Cobham Lk, White Cl.), NSW, 1999. This survey was acquired under the project No. 745 for the geological survey of NSW. The grid has a cell size of 0.00048 degrees (approximately 50m). This grid contains the ground elevation relative to the geoid for the NSW DMR, Area M, Kayrunnera(Milparinka, Cobham Lk, White Cl.), NSW, 1999. It represents the vertical distance from a location on the Earth's surface to the geoid. The data are given in units of meters. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This NSW DMR, Area M, Kayrunnera(Milparinka, Cobham Lk, White Cl.), NSW, 1999 (P745), radiometric line data, AWAGS levelled were acquired in 1999 by the NSW Government, and consisted of 55448 line-kilometres of data at 250m line spacing and 60m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    This GSNSW Exploration NSW Area D Surat Basin uranium grid geodetic is an airborne-derived radiometric uranium window countrate grid for the NSW DMR, Discovery 2000,1994-95, Area D, Surat Basin survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area D Surat Basin uranium grid geodetic has a cell size of 0.00072 degrees (approximately 75m). The data are in units of counts per second (or cps). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 117000 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    The Digital Elevation Model represents ground surface topography between points of known elevation. The elevation data was calculated using the altimeters and Global Positioning System (GPS) sensor used for the benefit of airborne magnetic and radiometric data on the same survey. The elevation is the height relative to the Australian Height Datum GDA94 (AUSGEOID09). The processed elevation data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the NSW DMR, Discovery 2000,1994-95, Area D, Surat Basin survey were acquired in 1995 by the NSW Government, and consisted of 117000 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSNSW Exploration NSW Area E North Parkes total count grid geodetic has a cell size of 0.00121 degrees (approximately 124m) and shows the terrestrial dose rate of the NSW DMR, Discovery 2000, 1994-95, AREA E, Northern Parkes. The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 122000 line-kilometres of data at 250m line spacing and 60m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00121 degrees (approximately 124m) and shows potassium element concentration of the NSW DMR, Discovery 2000, 1994-95, AREA E, Northern Parkes in units of percent (or %). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 122000 line-kilometres of data at 250m line spacing and 60m terrain clearance.